Implementing Sustainable Materials Management in Florida

State of Florida 75% Recycling Goal Technical Advisory Group (TAG) Meeting October 11, 2017 Tampa, Florida

Issues with Mass-Based Recycling Rates

Accounting

- What counts?
 - Alternative daily cover (ADS) at landfills
 - WTE
 - Landfill gas to energy
 - Concrete and asphalt recycling
 - Biosolids recycling
 - Industrial waste recycling
- Creative Accounting
 - How good are the numbers?
 - How do you avoid cherry picking or double-counting?
- Total or per capita?

Substance

- Does not reflect <u>source</u> reduction (if you reduce the numerator, you also reduce the denominator)
- Treats all materials the same. We know materials have differing impacts with regard to environmental burdens, economics and landfill capacity consumption.

Alternative Approaches

- Set a target amount of material landfilled on an annual basis
 - What value do you set this to?
 - 2016 Florida generation: 10.2 pounds/person-day
 - 2016 Florida landfilling: 4.5 pounds/person-day
- This approach would allow us to incorporate source reduction, but would not differentiate among materials

Implementing SMM

Key Understanding: Materials are not equal with respect to environmental consequence

Current Approach: All tons are the same

SMM Approach: A ton of one material will result in a different consequence than one ton of another material

Which consequence do we look at?

- Landfill capacity
- Energy production/consumption
- Greenhouse gas emissions
- Impact on water
- Human toxicity
- Jobs

For some of these consequences, life cycle assessment tools can be used to compare relative consequence

US EPA's

WARM

Example of how materials have different consequences: Energy

Aluminum

- Recycling → the amount of energy it takes to make a new aluminum product from a recycled aluminum product is much less
- WTE → no energy is produced from combusting aluminum
- Landfilling → no energy is produced from landfilling aluminum

Yard Trash

- Recycling → when yard trash is mulched, there is a net consumption of energy
- WTE → energy will be captured from combusting yard trash in energy facility
- Landfilling → energy may be captured from landfilling yard trash

Energy Factors in WARM

Units = million BTU/ton	Aluminum	Yard Trash
Recycle	152.8	-0.58
WTE	-0.60	2.48
Landfill	-0.27	-0.14

Notes:

Black numbers indicate a net energy production/off-set Red numbers indicate a net energy consumption Composting is assumed as recycling market for yard trash

WARM Energy Factors

WARM Energy Factors

Per Ton Estimates of Energy Use for Alternative Management Scenarios

	Energy Savings	Energy Savings	Energy Savings	Energy Savings per	Energy Savings per	Energy Savings per Ton of Material
	per Ton of Material	per Ton of Material	per Ton of Material	Ton of Material	Ton of Material	Anaerobically
Material	Source Reduced (million BTU)	Recycled (million BTU)	Landfilled (million BTU)	Combusted (million BTU)	Composted (million BTU)	Digested (million BTU)
Aluminum Cans	(89.69)	(152.76)	0.27	0.60	NA	NA
Aluminum Ingot	(126.95)	(113.85)	0.27	0.60	NA	NA
Steel Cans	(29.88)	(19.97)	0.27	(17.14)	NA	NA
Copper Wire	(122.36)	(82.59)	0.27	0.54	NA	NA
Glass	(6.90)	(2.13)	0.27	0.50	NA	NA
HDPE	(61.21)	(50.20)	0.27	(19.34)	NA	NA
LDPE	(71.02)	NA	0.27	(19.24)	NA	NA
PET	(50.26)	(31.87)	0.27	(10.13)	NA	NA
LLDPE	(66.37)	NA	0.27	(19.30)	NA	NA
PP	(66.59)	NA	0.27	(19.31)	NA	NA
PS	(74.99)	NA	0.27	(17.40)	NA	NA
PVC	(48.34)	NA	0.27	(7.46)	NA	NA
PLA	(30.69)	NA	0.27	(7.94)	0.58	NA
Corrugated Containers	(22.32)	(15.07)	(0.25)	(6.64)	NA	NA
Magazines/third-class mail	(33.23)	(0.69)	0.04	(4.89)	NA	NA
Newspaper	(36.46)	<mark>(16.49</mark>)	0.05	(7.53)	NA	NA
Office Paper	(36.60)	(10.08)	(0.53)	(6.40)	NA	NA

WARM Energy Factor for Recycling (MMBTU/ton)

(MMBTU/ton) -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Office Paper **Corrugated Containers** Food Waste Newspaper Yard Trimmings **Dimensional Lumber Aluminum Cans Steel Cans** Glass HDPE PET Carpet Concrete Tires Asphalt Concrete Asphalt Shingles Drywall

WARM Energy Factor for Landfilling

WARM Energy Factor for WTE (MMBTU/ton)

Estimating a State of Florida "Energy Savings Footprint" from Waste Management Practices

 If you can assign the each waste component to its corresponding disposition (landfill, recycling, WTE, compost), you can develop a net energy savings footprint.

Net Energy = Footprint	Net	Net	Net
	Energy	Energy	Energy
	from	from t	from
	Recycling	Landfilling	WTE

We could come up with similar footprints for other environmental consequences

SMM Based Materials Management

- We can develop a "footprint" for any environmental consequence if we have appropriate data. Examples:
 - Florida 2015 Energy Savings Footprint = 11.3 MMBTU/person
 - Florida 2015 Carbon Reduction Footprint = 1.02 MTCO2E/person
- Challenges:
 - What is our target?
 - Will a target value in units like MMBTU be transferable to policy makers and the public?
- Oregon DEQ is using these types of equations to shape materials management policy

New Approach

 Let's equate a measurement such as an energy footprint with what we are used to: a weight-based recycling rate

Use this hypothetical 75% recycling scenario, calculate a corresponding energy footprints (with WARM factors)

Calculate a "baseline" energy footprint

Approach

Approach

Approach

Integrating Source Reduction

- By comparing the net energy footprint from recycling, landfilling, and WTE in any year to a target year, we can calculate an "energy equivalent recycling rate."
- This approach treats materials differently, but it still does not incorporate source reduction.

Florida Solid Waste Generation in 2008 and 2015

Per-Capita Florida Solid Waste Generation in 2008 and 2015

Florida's Per-Capita Waste Component Increase/Decrease $2008 \rightarrow 2015$

	Per Capita Generation			
	(ton/person-year)			
Material	2008	2015	Difference	
Aluminum Cans	0.012	0.010	-0.002	
C&D Debris	0.400	0.487	0.087	
Corrugated Paper	0.137	0.128	-0.009	
Ferrous Metals	0.148	0.122	-0.026	
Food	0.092	0.100	0.008	
Glass	0.042	0.043	0.001	
Newspaper	0.077	0.051	-0.026	
Non Ferrous Metal	0.038	0.025	-0.013	
Office Paper	0.043	0.031	-0.012	
Other Paper	0.109	0.110	0.001	
Other Plastics	0.061	0.073	0.012	
Plastic Bottles	0.024	0.023	-0.001	
Steel Cans	0.017	0.015	-0.002	
Textiles	0.048	0.038	-0.010	
Tires	0.020	0.012	-0.008	
White Goods	0.029	0.018	-0.011	
Miscellaneous	0.149	0.156	0.007	
Process Fuel	0.032	0.027	-0.005	
Yard Trash	0.170	0.177	0.007	
Total	1.648	1.645	-0.004	

Florida's Per-Capita Waste Component Increase/Decrease $2008 \rightarrow 2015$

	Per Capita Generation			
	(ton/person-year)			
Material	2008	2015	Difference	
Aluminum Cans	0.012	0.010	-0.002	
C&D Debris	0.400	0.487	0.087	
Corrugated Paper	0.137	0.128	-0.009	
Ferrous Metals	0.148	0.122	-0.026	
Food	0.092	0.100	0.008	
Glass	0.042	0.043	0.001	
Newspaper	0.077	0.051	-0.026	
Non Ferrous Metal	0.038	0.025	-0.013	
Office Paper	0.043	0.031	-0.012	
Other Paper	0.109	0.110	0.001	
Other Plastics	0.061	0.073	0.012	
Plastic Bottles	0.024	0.023	-0.001	
Steel Cans	0.017	0.015	-0.002	
Textiles	0.048	0.038	-0.010	
Tires	0.020	0.012	-0.008	
White Goods	0.029	0.018	-0.011	
Miscellaneous	0.149	0.156	0.007	
Process Fuel	0.032	0.027	-0.005	
Yard Trash	0.170	0.177	0.007	
Total	1.648	1.645	-0.004	

Incorporating Source Reduction

- If we establish a baseline year (e.g., 2008), we can compare component generation in any future year.
- When source reduction occurs, this adds to the savings footprint, and thus increases the recycling rate.
- When source increase occurs, this lowers the savings footprint, and thus decreases the recycling rate.

Example

- Let's examine the effect of several different SMM approaches on mass-based and energy-based recycling rates.
 - Increase WTE
 - More collection of major recyclables from residential stream
 - Source segregate organics
 - Increase C&D and yard trash recycling
 - Combination

Progress Towards Recycling-dominated baseline 0% 40% 60% 80% 20% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Duval, Brevard, Polk, Volusia, and Orange county divert a third of their total collected MSW into WTE.

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 20% 40% 60% 80% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario 75% recycling of residential curbside materials for newspaper, glass, aluminum cans, plastic bottles, steel cans, corrugated paper, and office paper.

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 40% 20% 60% 80% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario **Organics Scenario** Organics recycling program will increase the Florida's food recycling rate to become 75%

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 20% 40% 60% 80% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario **Organics Scenario** C&D and YT Scenario Bulk recycling programs for with a 75% recycling rate for C&D Debris and yard trash

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 40% 20% 60% 80% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario **Organics Scenario** C&D and YT Scenario Combination Combination of Curbside, Organics, and C&D and YT Scenario

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 40% 60% 80% 20% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario **Organics Scenario** C&D and YT Scenario Combination 2015 Mass and Disposition 2015

Applying SMM for Florida SWM in 2020

Progress Towards Recycling-dominated baseline 0% 40% 60% 80% 20% 100% 120% Weight-based EfW EfW Scenario **Energy-based** Curbside Scenario **Organics Scenario** C&D and YT Scenario Combination 2015 2017 2019 2015 10/11/17

Applying SMM for Florida SWM in 2020

Summary

- The approach of using lifecycle metrics as an alternative to weight-based recycling rates is of growing interest (e.g., Oregon).
- An approach was developed in Florida to use life cycle metrics (illustrated with energy savings) in a manner to compliment the current statutory requirement. This approach considers source reduction and differences among materials.
- Discussion points:
 - Which baseline to use?
 - Which sustainable consequence to use?